ICE SUBLIMATION FROM FROZEN SALT SOLUTIONS
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The sublimation method of drying is finding ever wider application in scientific and technical
fields. For example, one of the newest fields employing this method is cryochemical synthesis
of inorganic materials, with sublimation dehydration as the basis of the process. Sublimation
of ice from rapidly frozen salt solutions produces powders with a component distribution close
to that existing in the solution. We will congider the problem of ice sublimation from salt so-
lutions frozen in the form of a plate, cylinder, and sphere in a flow of noncondensing gas at a
pressure of 0.01 = P < 1,02 bars, The noncondensing gas contains vapors. of the subliming ma-
terial at a partial pressure of ps. Comparison of theoretical and experimental data reveals
completely satisfactory agreement. The mass output coefficient, which is usually determined
experimentally for mass-exchange processes with phase transitions, can be found in a manner
analogous to the heat-liberation coefficient for a volume content of noncondensing gas between
25 and 100%.

Experiments have revealed that in sublimation dehydration of various materials with porous structure
the temperature difference between the phase-transition boundary and the heat-exchange medium is small [1].
This allows neglect of the convective component of heat transfer as compared to the heat of phase transition.
Vapor transfer is accomplished not only by molecular diffusion, but also by a Stefan flow, which produces a
change in the mass output coefficient 3. The effect of the material's porous structure on the diffusion process
within the limits of the dehydrated zone is considered by means of an effective diffusion coefficient D =kD,,
where Dy is the diffusion coefficient in a free volume and k is a proportionality coefficient dependent on the
structure of the material. The following assumptions are also made: the vapor—gas mixture surrounding the
subliming body is a two-component ideal gas; the temperature change at the phase-transition boundary is neg-
ligibly small; thermodiffusion and radiative heat transfer are absent.

In this case the basic equation of the problem has the form

dp/ot +- vop/at= (D/E")(0/0E)E"dp/aE) (10, q < E < a) (1)
with boundary conditions
o, T = py; {2)
—(D/RT)0p/0g + vp/RT = (B/RTY(p — ps) (v >0, & = a); (3)
—(DIRT)OpIO% + vp/RT = opin/dr (x>0, & = n(1)), )
where v is the velocity of the Stefan flow, defined by the expression [2]
v = —[D/(P — p)lap/dt; {5)

where p is partial pressure of vapor; P is the total pressure of vapor—gas mixture; a is the characteristic
dimension of body from which ice sublimes (radius of sphere or eylinder, thickness of plate); ¢ is the generali-
ized coordinate; n is the position of the phase-transition boundary; T is the time; n is the form constant, equal
to 0, 1, and 2 for a plate, eylinder, and sphere, respectively; R is the specific gas constant of vapor; p is the
ice density; o is the volume porosity of material; T =(T,+Ty5)/ 2 is the mean temperature of vapor—gas mix-

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 122-129,
May-dJune, 1976. Original article submitted July 15, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

387



2 7 r
! i
~N SR | - °2 |‘1 3 ——4
1008 ;
; by
i Nugp - =3
|
Nu p
3 Z i
ﬁ |
i !
1 :
i :
! g i
E :
107} L
| !
2-1072 N ’ o
2-10~7 10° 10!
0 e:g/:rz'p

Fig. 1

ture; the subscript b refers to conditions in the frozen zone, including the phase-transition boundary; sub-
script f refers to the flow of noncondensing gas.

The difficulty of solving this equation lies in its nonlinearity [in light of Eq. (5), Eq. (4)] and the fact that
the mass output coefficient 8 in Eq. (3) is not a constant, but is dependent in a complex fashion on total partial
pressures of the vapor—gas mixture,

Usually, the value of the coefficient 8 cannot be determined by analytic methods. In the majority of cases
it is necessary to use various empirical equations. A characteristic example are the criterial equations re-
cently obtained by generalization of alarge amount of experimental data on vapor condensation from vapor—
gas mixtures [3]:

Nup/Nup, = 0.71 eé‘“‘c’u"p_“' at 01 & /uP <1 1G]
Nup/Nup, = U.Tieg’g:r;“‘i a1« &g /JIP < 3; (7N
Nup/Nup, = e5 ' at  eg/mp>>3, (8)

where Nupy=81/D is the Nusselt diffusion number; NuD0 is the Nusselt diffusion number calculated by analogy
to the Nusselt thermal number; ! is the characteristic dimension of body; 1rp=(pf—pw) /P is the dimension-
less difference of vapor partial pressure in the flow and at the condensation surface; €g=(P—p) /P is a dimen-
sionless quantity characterizing the volume gas content in the vapor—gas mixture. It is obvious that use of 38
from these equations creates practically insurmountable difficulty in solving the problem, which could be
avoided if there were an expression for the mass outpuf coefficient in which at a Lewis—Semenov number near
unity the coefficient could be defined analogously to the heat-liberation coefficient. With this purpose in mind,
the concept of corrected film thickness & has been used {2, 4, 5]. The transfer mechanism in the film is con-
sidered not only molecular, but also convective, The density of matter flow transferred through the film in
the direction perpendicular to the body surface is expressed by the well-known Stefan equation [2]

m = =(D,P/RTS) In (P — p.)/ (P — pp)l,

where the plus sign corresponds to the case of desublimation (condensation) of vapor, and the minus sign to
the case of sublimation (evaporation); py, is partial vapor pressure at the body surface.

Since for the corrected film 6 =D,/ 8,, the Stefan equation is written in the form
m = +=Be(P/RT) In [(P — pu)/(P — pp)]. 9

We will show that the quantity 8, introduced in Eq. (9) is defined in a manner analogous to the heat-liberation
coefficient and can replace the coefficient 8 in the boundary conditions of Eq. (8). To do this, we write the
matter flow density expressed by Eq. (9) in the form

m = £(B/RT)ps — pu). (10)
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Comparison of Egs. (9) and (10) gives
B/By = Nuy/Nup, = £ [P/(p; — p )} In [(P — p. J(P — p))|
or, in the notation used in Egs. (6)-(8) we may write
Nup/Nup, = = (1/mp)In (1 + 7, ‘eg.). (11)

The values of Nup/Nup_are presented in Fig. 1: curve 1 corresponds to Eq. (11) of the present study (the
same result is given by Eqgs. (6)-(8) of [3]); curve 2 shows experimental data of [3]; curve 3, data of [6]; curve
4, equations of [7]. :

The good agreement of the calculated results with experimental data is justification for the conclusion
that the mass output coefficient 8, can be calculated with sufficient accuracy by analogy with the heat-libera-
tion coefficient, and Eq. {9) can be used in place of the right side of Eq. (3). Moreover, instead of the separate
equations (6)-(8), it will be convenient to use the single equation (11) in the range €gf/Tp= 0.2, It should be
noted that with a small difference between partial pressures at the body surface and in the flow, i.e., when
Tp/€gt< 1, Eq. (8) can be derived from Eq. (11) as a special case by retaining the first term in the expansion
of the logarithm in a series. '

The conclusion arrived at in considering the mass output coefficient permits writing boundary condition
(3) in the form

(D RT3 ~ vp'RT = —B(P'RT) In (P — p)A(P — pAl. (12)

In order to eliminate the square of the first derivative in Eq. (1) a new variable is introduced (Stefan substi-
tution), '

¢ = ln (P — p)A(P — ppl.

For the new variable, basic equation (1) and the boundary conditions (2), (12), (4) take the form

dg 9t = (D/2(0°98)(§70¢/0%) (1> 0. n<< i< a); (13)
¢, T) = ¢ (14)

Dig/ot = —fp (1>0, & = a); (15)
DPog/0t = RTopdn/dt (v > 0. & = y(1)), (18)

where ¢p=1n [(P—pp)/(P—pp].

Since the relaxation time of the partial vapor pressure field in the dehydrated zone is significantly less
than the time for advancement of the phase-transition boundary, the derivative 8¢/37 may be omitted in Eq.
(13), and the time can be found from Eq. (16). In this case solution of the homogeneous equation

(D7gm)(d/dE) EndeidE) = O
with boundary conditions (14), (15) gives

¢ = ¢,[{1 —a)Dar = Byiat—r — =) — n)Dlav + Bylat-r _ ni=] for a plate and sphere;

1/Bip, + Inta/g)

P = @ 15y, for a cylinder,

-+ In(a/n)
where BiD0=60a /D is the Biot diffusion number.

Then integration of Eq. (16) allows us to find an expression for the tota! time for sublimation dehydration
of salt solutions frozen in the form of a plate, cylinder, or sphere:

B a*RTop /Bl / ’
T i D DPINP — )P — p,)] (1/Bip, + 1/2). (17

T

It should be kept in mind that in using Eq. (17) to calculate sublimation time it is first necessary to de-
termine the partial vapor pressure value at the phase-transition boundary (pb) from the thermal balance equa-
tion

MT; — Ib) = [2PDr/R(Ty + T;)11n (P — p)/(P — p)]

1

where A is the effective thermal-conductivity coefficient of the dehydrated zone; r is the heat of phase transi-
tion (sublimation); pp and Tp are related by the Clapeyron—Clausius equation.
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TABLE 1

a-10%, M 8 | 3 | 03 0,2
T, sec_
Results

T,°K | 2,Pa | o,mkec -
experi- | experi-
theory | mdn; |theory Tadyts | theory | theory

268 1333,2 0,52 897 990 224 — 6,2 1.00
6666,0 2899 3100 725 800 20,1 3,00

15998,4 5443 5670 1361 1450 37.8 6,00
102389,8 24081 25530 6020 6600 1670 26,80

258 1333,2 0,52 2442 2670 6it 680 17,0 2,70
6666,0 7359 7980 1590 1710 a1 8.00

15998.4 15013 16130 3753 4130 104,2 16,70
102389,8 59781 62170 14945 16080 415,1 66,40

268 1333,2 1,34 627 690 157 — 4.3 0,70
) £666,0 220 . 2410 350 610 13,3 2.40
15998,4 4352 4710 1088 1210 30,2 4,80
102389,8 21287 21820 - 3322 5950 147.8 23.60

258 1333.2 1,34 1714 1840 429 480 1.9 1,80
6666,0 5613 6250 1403 1520 36.0 14,20

159984 12048 13100 2 3260 83.6 13,30
102389,8 52944 . 55440 13236 14190 367,6 38,80

268 1333.2 3,00 480 330 120 — 34 0,53
(666,0 1821 2610 455 510 12.6 2,00

15998,4 3735 060 439 {100 26,0 440
102389,8 10724 20730 4931 3340 137.0 21.90

258 1333,2 3,00 1315 1450 329 A79 9.1 1.46
BGGE.0 40633 5107 163 1270 EERH 5.10

15998.4 10429 11080 2007 2830 724 11,50
102389.8 . 49192 50420 12208 34980 BIARE 34.60

268 13332 35,00 412 430 103 — 29 0.46
6666,0 1646 1780 442 440 114 1.80

15998.4 3484 3700 STt 1000 24.2 3.90
102389,8 19025 19870 4756 5180 132.1 21,10

258 1333.2 5,00 1132 1250 283 340 7.4 1,20
6666.0 4222 4570 1054 1180 29,3 4.70

15998,4 9G93 - 10489 2424 2570 67.3 10.80
102389.8 47524 48370 11881 12830 3200 52.80

Experiments were performed on sublimation dehydration of spherical granules obtained by freezing
aqueous solutions of Mohr's salt in liquid nitrogen. Initial solution concentration was 14.7%. The experiments
were performed in the following manner. Several granules were placed on a screen which served as the pan
of a spring-type microscale installed in the experimental chamber. A draft of air at controlled velocity and
pressure was passed over the granules. The air was dried in a zeolite column and cooled to the desired tem-
perature in a thermostatic chamber conrected to a cooler before entry into the experimental chamber. The
scale indicator position was determined with a cathetometer. Dehydration was continued until there was no
change of specimen weight with time. The porosity of the dehydrated material was determined from the weight
difference before and after dehydration, and the known granule volume.

Drying time was calculated with Eq. (17) for the given experimental conditions. It was assumed that
pg=0 in the calculations. Porosity was 0.85. The mass output coefficient 8, entering into the Biot diffusion
number was caleulated by analogy with the heat-liberation coefficient for forced vapor flow [8]:

Nu = 2 -+ 0.03 Pr®% Re03* + 0.35 Prt38 Reo.58,

Results of the computation and experimenta,l' data are presented in Table 1. The completely satisfactory agree-
ment between experiment and theory testifies to the correctness of the model chosen for the process and to
the validity of the assumptions made in formulating the problem.

Equation (17) and the experimental data allow several conclusions as to the effects of various param-
eters on the duration of the sublimation dehydration process. For example, increase in vapor —gas mixture
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flow velocity leads to reduction in drying time down to the point where {/Bip, << ;2. However, the theoretical
and experimental data show that increase in flow velocity above 5 m/sec is not expedient.

Drying time is decreased by increase in solvent partial vapor pressure on the phase-transition boundary
and by reduction to a minimum of the content of these vapors in the noncondensing gas (pg=0). This can be
achieved by selection of a solvent with the highest partial pressure value at the chosen process temperature,
or by increase in the temperature of the subliming body for a given solvent. In the latter case a limitation
exists — the eutectic temperature of the frozen salt solution. ’

The binary diffusion coefficient proves to have a significant effect on the duration of sublimation dehy-
dration., In particular, the dehydration time is decreased upon increase in the diffusion coefficient, which can
be achieved by reduction in total pressure in the sublimator and selection of a corresponding solvent and non~
condensing gas. It is desirable to use methane, hydrogen, or helium for the gas. As was reported in [9] and
other studies, upon replacement of air by helium as the noncondensing gas, the duration of the dehydration
process is decreased by a factor of more than three (with all other conditions equal).

In conclusion, we note that in preparation of materials with small pore dimensions {(of the molecular
sieve type), atmospheric sublimation drying is of great interest. In this case, for the majority of frozen sol-
vents the partial vapor pressure is much less than atmospheric pressure. Then, preserving the first term
in the expansion of the logarithm in the series, from Eq. (17) at high flow velocities for the dry noncondensing
gas we obtain

1 = a*RTo0/2D(n - Hip;.
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